Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200269, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309688

ABSTRACT

The number of COVID-19 outbreaks reported in UK care homes rose rapidly in early March of 2020. Owing to the increased co-morbidities and therefore worse COVID-19 outcomes for care home residents, it is important that we understand this increase and its future implications. We demonstrate the use of an SIS model where each nursing home is an infective unit capable of either being susceptible to an outbreak (S) or in an active outbreak (I). We use a generalized additive model to approximate the trend in growth rate of outbreaks in care homes and find the fit to be improved in a model where the growth rate is proportional to the number of current care home outbreaks compared with a model with a constant growth rate. Using parameters found from the outbreak-dependent growth rate, we predict a 73% prevalence of outbreaks in UK care homes without intervention as a reasonable worst-case planning assumption. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Pandemics , SARS-CoV-2/pathogenicity , Aged , COVID-19/virology , Cost of Illness , Female , Humans , Male , Nursing Homes/statistics & numerical data , United Kingdom/epidemiology
2.
Infect Dis Model ; 5: 409-441, 2020.
Article in English | MEDLINE | ID: covidwho-632576

ABSTRACT

During an infectious disease outbreak, biases in the data and complexities of the underlying dynamics pose significant challenges in mathematically modelling the outbreak and designing policy. Motivated by the ongoing response to COVID-19, we provide a toolkit of statistical and mathematical models beyond the simple SIR-type differential equation models for analysing the early stages of an outbreak and assessing interventions. In particular, we focus on parameter estimation in the presence of known biases in the data, and the effect of non-pharmaceutical interventions in enclosed subpopulations, such as households and care homes. We illustrate these methods by applying them to the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL